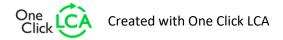


ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025


Terrain PVC Push-fit Fittings Polypipe Building Services

EPD HUB, HUB-4120

Published on 12.10.2025, last updated on 12.10.2025, valid until 11.10.2030

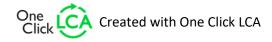
Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.1 (5 Dec 2023) and JRC characterization factors EF 3.1.

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Polypipe Building Services
Address	College Road, New Hythe Business Park, Aylesford, Kent, ME20 7PJ, United Kingdom
Contact details	commercialenquiries@polypipe.com
Website	www.polypipe.com/commercial-building- services

EPD STANDARDS, SCOPE AND VERIFICATION

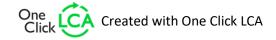

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Nigel Delo & Chris Goodwin
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☑ External verification
EPD verifier	Haiha Nguyen, as an authorized verifier acting for EPD Hub Limited

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products

may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Terrain PVC Push-fit Bends
Additional labels	See scaling table
Product reference	107P.4.135G
Place(s) of raw material origin	Europe
Place of production	Aylesford, United Kingdom
Place(s) of installation and use	United Kingdom, Republic of Ireland, Middle East
Period for data	Calendar year 2024
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3 (%)	0%
GTIN (Global Trade Item Number)	4025416368984
NOBB (Norwegian Building Product Database)	-



ENVIRONMENTAL DATA SUMMARY

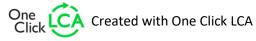
	···
Declared unit	1 x Terrain PVC Spigot/Socket Push-fit Bend - 110mm Grey
Declared unit mass	0,385 kg
GWP-fossil, A1-A3 (kgCO₂e)	1,08E+00
GWP-total, A1-A3 (kgCO ₂ e)	9,87E-01
Secondary material, inputs (%)	1,43
Secondary material, outputs (%)	33,8
Total energy use, A1-A3 (kWh)	4,67
Net freshwater use, A1-A3 (m³)	0,01

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Polypipe Building Services is a UK manufacturer of highly engineered above ground drainage and supply systems, servicing the commercial and industrial sectors of the UK construction Industry.

As part of the Genuit Group we aim to help create a better built environment by developing and producing sustainable solutions to the key challenges in water, climate and ventilation management.


Polypipe Building Services are specialists in providing engineered solutions, leveraging offsite fabrication to design and deliver to mechanical and public health engineers, M&E contractors as well as local authorities. Polypipe Building Services houses the industry leading brand Terrain and has been delivering solutions to commercial, multiple occupancy residential, healthcare, education and leisure projects for over 60 years.

PRODUCT DESCRIPTION

Soil pipes are designed to convey wastewater from sanitary appliances through the building and out into the sewer system. Terrain PVC-u soil systems include an extensive range of products for single and multi-occupancy residential, hotels, hospitals, schools and public sector developments. The system can connect to our cPVC waste system as well as our HDPE and Polypropylene soil pipe systems via use of ring seals, solvent weld boss horns (PVC-u) and other adaptors.

Terrain PVC soil is available in both solvent-weld and push-fit systems. Suitable for both interior and exterior use, the lightweight PVC-u system offers soil pipes with an extensive range of compatible soil fittings.

Built on a platform of innovation and technical expertise, Terrain PVC soil is a kitemarked system, which offers premium quality, quick installation, and outstanding flexibility.

Further information can be found at www.polypipe.com/commercial-building-services.

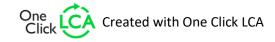
PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	-	-
Minerals	7	Europe
Fossil materials	93	Europe
Bio-based materials	-	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	-
Biogenic carbon content in packaging, kg C	0,537



FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 x Terrain PVC Spigot/Socket Push-fit Bend - 110mm Grey
Mass per declared unit	0,385 kg
Functional unit	-
Reference service life	50 Years

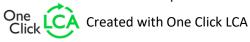
SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.


Pro	duct st	tage		mbly			U	se sta	ge			E	nd of l	ife sta	ge		Beyond the system boundaries			
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4					
×	×	×	×	×	MND	MND	MND	MND	MND	MND	MND	×	×	×	×					
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling		

Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Raw material pellets are manufactured into a product via a Moulding machine and then seals added. The product is then placed onto a cardboard carton,

taped and placed onto a wooden pallet. Electricity consumed is split between renewable energy via wind turbines (32% supported by a Renewable Energy Guarantee of Origin - REGO) and 68% by an onsite Combined Heat and Energy Plant - CHP. Production scrap is reprocessed on site and put back into the process. Head waste that cannot be reprocessed on site is sent to local waste processing (A3).

TRANSPORT AND INSTALLATION (A4-A5)

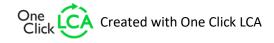
Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

The average transport distance to builders merchants (319km) and from builders merchants to site of installation (40km). This was calculated using a comprehensive sample of products shipped throughout 2024. This could vary depending on location of builders merchants and installation. All vehicles used are to Euro 5 standard and use HVO biodiesel. There are no losses associated with transport because the product is wrapped and secured effectively. Volume capacity utilisation is assumed to be that for packaged products.

The installation of the declared unit requires the use of a forklift truck to take the product from the vehicle on to site ready for installation. Lubricant is used on the pipe and ring seal for the installation process.

At Polypipe Building Services we offer a collection and recovery service for product and packaging through our distribution channel, for all plastic waste, which can then be recycled and reused at our Aylesford site. However, we realise that not everyone will use this and therefore the reality is that some of our product and packaging will become part of the general site waste.

PRODUCT USE AND MAINTENANCE (B1-B7)

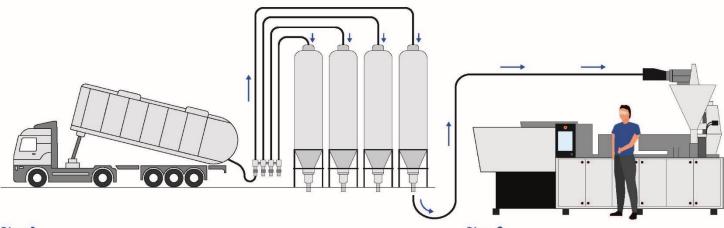

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

As part of the deconstruction process it is assumed that diesel powered equipment would be used to transport the product around the site. This would vary depending on the deconstruction methodology. C2 has been modeled using secondary data of waste processing facilities across the UK which all fall within a 50km distance. End of life scenarios have been modeled against Plastics Europe 2021 data due to a lack of verified product specific end-of-life data, the following scenario was used 34% recycled, 41% energy recovery, 25% landfill.

Due to the recycling and incineration potential of PVC, the end-of-life product is converted into recycled PVC while energy and heat is produced from its incineration. The benefits and loads of waste packaging materials in A5 are also considered in module D.



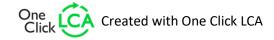
MANUFACTURING PROCESS

Step 1

Raw material is delivered to our factory on a tanker and deposited into our silos.

Step 2

Fitting are made by raw material being fed via the hopper where the material is passed through a screw and barrel into a moulding machine, where the material is moulded into shape and then cooled.


Step 3

Once produced, Terrain fittings are palletised and stored on site.

Step 4

The product is then loaded onto a lorry and dispatched.

LIFE-CYCLE ASSESSMENT

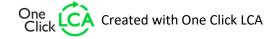
CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	No allocation
Manufacturing energy and waste	Allocated by mass or volume

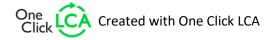

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3 (%)	0%

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1 environmental data sources follow the methodology 'allocation, Cutoff, EN 15804+A2'.


ENVIRONMENTAL IMPACT DATA

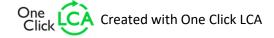
The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	8,62E-01	2,20E-02	1,03E-01	9,87E-01	7,47E-03	2,08E-01	MND	2,02E-04	6,60E-03	3,62E-01	1,15E-02	-3,91E-01						
GWP – fossil	kg CO₂e	8,60E-01	2,20E-02	1,99E-01	1,08E+00	1,07E-02	3,66E-02	MND	2,02E-04	6,60E-03	3,62E-01	1,15E-02	-3,22E-01						
GWP – biogenic	kg CO₂e	1,41E-03	4,19E-06	-9,58E-02	-9,44E-02	-3,36E-03	1,71E-01	MND	2,06E-08	1,49E-06	-5,58E-04	-6,05E-06	-6,89E-02						
GWP – LULUC	kg CO₂e	7,38E-04	9,86E-06	2,18E-04	9,66E-04	1,35E-04	2,82E-05	MND	2,07E-08	2,95E-06	5,45E-05	7,01E-07	-3,66E-04						
Ozone depletion pot.	kg CFC-11e	2,99E-07	3,25E-10	6,59E-09	3,06E-07	1,33E-10	1,36E-08	MND	3,09E-12	9,74E-11	1,64E-09	2,78E-11	-1,07E-07						
Acidification potential	mol H⁺e	3,15E-03	7,51E-05	6,46E-04	3,87E-03	6,64E-05	1,63E-04	MND	1,82E-06	2,25E-05	2,82E-04	7,63E-06	-1,25E-03						
EP-freshwater ²⁾	kg Pe	2,83E-04	1,71E-06	4,34E-05	3,28E-04	7,35E-07	8,52E-06	MND	5,83E-09	5,14E-07	1,78E-05	1,13E-07	-1,47E-04						
EP-marine	kg Ne	6,19E-04	2,47E-05	1,51E-04	7,95E-04	5,72E-05	4,90E-05	MND	8,45E-07	7,39E-06	9,58E-05	2,54E-05	-2,38E-04						
EP-terrestrial	mol Ne	5,92E-03	2,69E-04	1,53E-03	7,73E-03	2,91E-04	3,62E-04	MND	9,25E-06	8,04E-05	7,89E-04	3,11E-05	-2,11E-03						
POCP ("smog") ³)	kg NMVOCe	3,61E-03	1,11E-04	8,81E-04	4,60E-03	1,75E-05	1,37E-04	MND	2,76E-06	3,32E-05	2,52E-04	1,35E-05	-1,23E-03						
ADP-minerals & metals ⁴)	kg Sbe	1,46E-05	6,14E-08	1,05E-06	1,57E-05	1,36E-08	2,61E-07	MND	7,24E-11	1,84E-08	4,80E-07	2,42E-09	-4,63E-06						
ADP-fossil resources	MJ	2,11E+01	3,20E-01	4,44E+00	2,59E+01	2,62E-02	5,83E-01	MND	2,64E-03	9,57E-02	6,14E-01	2,39E-02	-8,22E+00						
Water use ⁵⁾	m³e depr.	2,69E-01	1,58E-03	9,04E-02	3,61E-01	4,31E-03	5,00E-02	MND	6,60E-06	4,73E-04	4,26E-01	1,17E-04	-1,16E-01						

1) GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1


Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Particulate matter	Incidence	2,59E-08	2,21E-09	7,01E-09	3,51E-08	4,48E-10	1,96E-09	MND	5,18E-11	6,61E-10	2,77E-09	1,73E-10	-4,56E-09						
Ionizing radiation ⁶⁾	kBq U235e	1,13E-01	2,78E-04	1,41E-02	1,27E-01	9,63E-05	3,15E-03	MND	1,17E-06	8,34E-05	2,70E-03	2,37E-05	-8,37E-02						
Ecotoxicity (freshwater)	CTUe	4,93E+00	4,52E-02	8,99E-01	5,88E+00	9,24E-02	3,44E-01	MND	1,45E-04	1,35E-02	1,79E+01	3,55E-02	-1,57E+00						
Human toxicity, cancer	CTUh	1,38E-09	3,64E-12	1,28E-10	1,51E-09	2,41E-12	1,26E-11	MND	2,08E-14	1,09E-12	1,13E-10	5,62E-13	-4,68E-10						
Human tox. non-cancer	CTUh	1,02E-08	2,07E-10	1,36E-09	1,18E-08	2,42E-10	4,25E-10	MND	3,29E-13	6,20E-11	1,78E-09	1,11E-10	-3,59E-09						
SQP ⁷⁾	-	2,95E+00	3,22E-01	8,33E+00	1,16E+01	2,68E-01	1,83E-01	MND	1,85E-04	9,64E-02	3,89E-01	5,56E-02	-1,20E+00						

6) EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

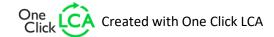
USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	1,24E+00	4,38E-03	9,46E-01	2,19E+00	1,32E-02	-1,32E+00	MND	1,67E-05	1,31E-03	6,05E-02	3,73E-04	6,11E-01						
Renew. PER as material	MJ	0,00E+00	0,00E+00	8,40E-01	8,40E-01	0,00E+00	-8,40E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	1,24E+00	4,38E-03	1,79E+00	3,03E+00	1,32E-02	-2,16E+00	MND	1,67E-05	1,31E-03	6,05E-02	3,73E-04	6,11E-01						
Non-re. PER as energy	MJ	1,27E+01	3,20E-01	1,52E+00	1,46E+01	2,35E-02	4,34E-01	MND	2,64E-03	9,58E-02	-8,36E+00	-3,74E+00	-1,09E+01						
Non-re. PER as material	MJ	8,41E+00	0,00E+00	1,08E+00	9,49E+00	0,00E+00	-1,68E+00	MND	0,00E+00	0,00E+00	-1,95E+00	-5,86E+00	5,52E+00						
Total use of non-re. PER	MJ	2,11E+01	3,20E-01	2,60E+00	2,41E+01	2,35E-02	-1,24E+00	MND	2,64E-03	9,58E-02	-1,03E+01	-9,59E+00	-5,38E+00						
Secondary materials	kg	5,52E-03	1,36E-04	4,32E-03	9,98E-03	1,53E-05	1,23E-04	MND	1,10E-06	4,08E-05	6,28E-04	8,63E-06	1,36E-01						
Renew. secondary fuels	MJ	3,23E-04	1,73E-06	2,97E-02	3,00E-02	2,26E-07	2,95E-06	MND	2,87E-09	5,18E-07	5,68E-05	1,62E-07	-1,38E-05						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	7,07E-03	4,73E-05	2,22E-03	9,34E-03	1,01E-04	1,09E-03	MND	1,75E-07	1,42E-05	9,88E-03	-3,55E-04	-3,34E-03						

8) PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	5,10E-02	5,42E-04	1,02E-02	6,17E-02	2,68E-04	1,85E-03	MND	2,94E-06	1,62E-04	1,00E-01	4,19E-05	-1,80E-02						
Non-hazardous waste	kg	2,51E+01	1,00E-02	9,77E-01	2,61E+01	1,75E-03	1,92E-01	MND	4,01E-05	3,00E-03	4,30E-01	4,77E-01	-9,24E+00						
Radioactive waste	kg	2,94E-05	6,82E-08	3,54E-06	3,30E-05	2,32E-08	8,01E-07	MND	2,87E-10	2,04E-08	6,90E-07	5,80E-09	-2,17E-05						

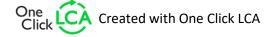

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,05E-02	MND	0,00E+00	0,00E+00	1,30E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,12E-01	MND	0,00E+00	0,00E+00	1,29E+00	0,00E+00	-1,12E-01						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,71E-02	MND	0,00E+00	0,00E+00	5,40E-01	0,00E+00	-4,71E-02						
Exported energy – Heat	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,50E-02	MND	0,00E+00	0,00E+00	7,50E-01	0,00E+00	-6,50E-02						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Global Warming Pot.	kg CO₂e	8,53E-01	2,19E-02	1,97E-01	1,07E+00	1,08E-02	4,16E-02	MND	2,01E-04	6,56E-03	3,62E-01	1,10E-02	-3,18E-01						
Ozone depletion Pot.	kg CFC-11e	2,98E-07	2,59E-10	5,32E-09	3,03E-07	1,27E-10	1,82E-08	MND	2,45E-12	7,77E-11	1,56E-09	2,22E-11	-1,06E-07						
Acidification	kg SO₂e	2,61E-03	5,74E-05	5,24E-04	3,19E-03	3,82E-05	1,33E-04	MND	1,28E-06	1,72E-05	2,23E-04	5,67E-06	-1,05E-03						
Eutrophication	kg PO ₄ ³e	1,27E-03	1,40E-05	2,33E-03	3,61E-03	1,52E-04	8,59E-04	MND	2,99E-07	4,19E-06	4,42E-05	3,71E-06	-3,03E-04						
POCP ("smog")	kg C ₂ H ₄ e	2,54E-04	5,11E-06	8,86E-05	3,48E-04	1,29E-06	1,18E-05	MND	9,60E-08	1,53E-06	2,09E-05	2,13E-06	-9,01E-05						
ADP-elements	kg Sbe	1,19E-05	5,99E-08	1,04E-06	1,30E-05	1,50E-08	2,05E-07	MND	7,04E-11	1,80E-08	3,28E-07	2,35E-09	-3,69E-06						
ADP-fossil	MJ	1,92E+01	3,15E-01	4,20E+00	2,37E+01	2,47E-02	5,21E-01	MND	2,62E-03	9,44E-02	5,70E-01	2,35E-02	-6,74E+00						

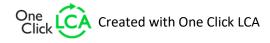
12



ADDITIONAL INDICATOR – GWP-GHG

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	8,61E-01	2,20E-02	1,99E-01	1,08E+00	1,08E-02	3,66E-02	MND	2,02E-04	6,60E-03	3,62E-01	1,15E-02	-3,22E-01						

⁹⁾ This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. In addition, the characterisation factors for the flows – CH4 fossil, CH4 biogenic and Dinitrogen monoxide – were updated. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterisation factor for biogenic CO2 is set to zero.

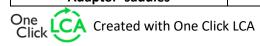


Part of the GENUIT GROUP

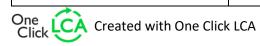
ANNEX:

PRODUCT SCALING

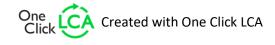
				A1-A3 GWP FOSSIL	
PRODUCT	SIZE (mm)	WEIGHT (kg)	SCALING FACTOR (multiple of)	(kgCO2e)	PRODUCT
	110	0.492	1.278	1.380	101.4.025
	110 (92°)	0.474	1.232	1.330	101D.4.92
Bend	82 (92°)	0.443	1.151	1.243	101P.3.92
	110 (112°)	0.430	1.116	1.205	101P.4.112
	110 (92°)	0.514	1.334	1.441	101P.4.92
	110 (92°)	0.570	1.482	1.600	103.4.92
	110 (92°)	0.610	1.583	1.710	103P.4.92
	110 (92°)	1.165	3.026	3.268	104.412.92
	110 (92°)	1.192	3.096	3.344	104.422.92
	110 (135°)	2.270	5.896	6.368	104E.4.135
Branch	110 (92°)	2.200	5.714	6.171	104E.4.92
	110 (92°)	1.260	3.273	3.535	104E.412.92
	82 (92°)	0.476	1.236	1.335	104P.3.92
	110 (135°)	0.813	2.112	2.281	104P.4.135
	110 (92°)	0.881	2.289	2.472	104P.4.92
	160 (92°)	1.820	4.727	5.105	104P.6.92
	160/110 (135°)	1.423	3.696	3.992	104P.64.135
	110 (92°)	1.511	3.925	4.239	105.4.92



PRODUCT	SIZE (mm)	WEIGHT (kg)	SCALING FACTOR (multiple of)	A1-A3 GWP FOSSIL (kgCO2e)	PRODUCT
Branch	110 (92°)	1.529	3.971	4.289	105P.4.92
Diancii	110 (92°)	1.135	2.947	3.182	106P.4.92
	110 (0-25°)	0.559	1.451	1.567	107P.4.025
Bend	110 (135°)	0.385	1.000	1.080	107P.4.135
	110 (92°)	0.570	1.479	1.598	107P.4.92
	110	1.416	3.678	3.972	107P.4.VAR
	160 (135°)	0.963	2.500	2.700	107P.6.135
	82	0.177	0.460	0.497	110P.3
Coupling	110	0.244	0.634	0.684	110P.4
	160	0.629	1.632	1.763	110P.6
	110	0.327	0.848	0.916	111.4
	82	0.286	0.743	0.802	111.S.3
Slip Coupling	110	0.274	0.710	0.767	111.S.4
	160	0.793	2.060	2.225	111.S.6
	110	0.225	0.584	0.631	111.SP4
	82	0.169	0.439	0.474	111P.3
Pipe end	110	0.264	0.685	0.740	111P.4
	160	0.570	1.479	1.598	111P.6
	110	0.091	0.235	0.254	112P.4.125
Strap on boss	110	0.092	0.239	0.258	112P.4.15
	110	0.144	0.373	0.403	112P.4.2
Adaptor saddles	110	0.071	0.184	0.199	115P.4



PRODUCT	SIZE (mm)	WEIGHT (kg)	SCALING FACTOR (multiple of)	A1-A3 GWP FOSSIL (kgCO2e)	PRODUCT
Straight boss adaptors	58/32	0.061	0.157	0.170	117.125
Straight boss adaptors	58/40	0.074	0.193	0.208	117.15
Straight boss adaptors	58/50	0.080	0.206	0.223	117.2
Universal soil manifold	110	0.707	1.836	1.983	119.412.15
omversar son mannora	110	0.797	2.070	2.236	119P.4.15
Triple boss collar	110	0.354	0.919	0.993	120P.4.15
Four way boss	110	0.453	1.176	1.270	120P.412.2
	82	0.331	0.860	0.929	123P.3
	110	0.500	1.299	1.403	123P.4.15
Reducers	110	0.426	1.106	1.195	123P.4
	82	0.173	0.449	0.484	124P.3.2
	110	0.237	0.614	0.663	124P.4.2
	110	0.255	0.662	0.715	124P.4.3
	160	0.618	1.604	1.732	124P.6.4
Caulking bush	110	0.285	0.739	0.798	132.4
	82	0.334	0.868	0.937	135.3
Access Door	110	0.324	0.842	0.909	135.4
	160	0.353	0.917	0.991	135.6
	82	0.153	0.397	0.429	136.3
Access cap	110	0.290	0.753	0.814	136.4
	160	0.506	1.314	1.419	136.6
	110	0.399	1.036	1.119	136P.4



PRODUCT	SIZE (mm)	WEIGHT (kg)	SCALING FACTOR (multiple of)	A1-A3 GWP FOSSIL (kgCO2e)	PRODUCT
Access pipe	82	0.428	1.110	1.199	137.3
Access pipe	82	0.429	1.113	1.119	137.3
	110	0.705	1.831	1.661	137.4
Access Pipe	110	0.592	1.538	1.560	138.4
	110	0.556	1.444	1.769	139.4
Access Pipe (Spigot/Socket)	110	0.631	1.638	4.877	139P.4
	160	1.739	4.516	1.908	139P.6
Auto Air Admittance Valve	82	0.680	1.766	0.118	153.3
Adaptor	40	0.042	0.109	0.160	6789/DVW
Αυαριοί	50	0.057	0.148	1.661	6790/DVW

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

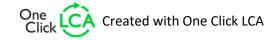
- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.


I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

HaiHa Nguyen, as an authorized verifier acting for EPD Hub Limited 12.10.2025

