Percolation Test

This Percolation Test follows the procedures laid out by the BRE Digest 365

Step 1 - Dig a trial hole

- The base of the trial hole should be approximately the same depth as anticipated in the full size soakaway.
- Overall excavation depth is typically: $1.5 \mathrm{~m}-2.5 \mathrm{~m}$ for areas $<100 \mathrm{~m}^{2}$.
- The test hole should be typically $0.3 \mathrm{~m}-1 \mathrm{~m}$ wide and $1 \mathrm{~m}-3 \mathrm{~m}$ long (make a record of the test hole dimensions).

Step 2 - Fill the hole with water

- Fill trial hole with water - this needs to be done rapidly to mimic a real storm event.
- Record the time taken for the water level to fall within the trial hole from 75% to 25% full.
- Repeat 3 times, allowing the trial hole to drain between tests.
- Best practice for soakaways longer than 25 m is to perform a second percolation test at a different location to that of the 1 st test site.

Step 3 - The results

Soil Infiltration Rate

$\mathrm{V}(\mathrm{p} 75-25)=$ Volume of the hole from 25% to 75% depth
a (p50) $=$ Internal surface area of the hole up to 50% of the depth and including the base area t (p75-25) $=$ The time for the hole to drain from 75% to 25% full in seconds

- Contact the Polypipe Water Management Solutions Technical Team and advise them of the dimensions of the test hole and lowest timed result (in minutes).
- Polypipe Water Management Solutions will take this data and estimate the soakaway size required.

Worked Example

Invert of the discharge drain - 1.0 m below the surface. When cleaned and trimmed the test hole was 2.51 m deep, 2.40 m long and 0.60 m wide.
An effective storage depth of 1.5 m therefore adopted.

Test hole volume between 75% and 25% effective depth:

Test hole depth
at 75% and 25%

The mean surface area through which outflow occurs,
taken to be the hole sides at 50\% effective depth, including the base of the pit:
$\mathrm{a}(\mathrm{p} 50)=0.75[2(2.40+0.6)]+(2.4 \times 0.6)=0.75(6)+1.44=5.94 \mathrm{~m}^{2}$
The time taken for water to drain from 75% to 25% full: $t_{(p 75-25)}=102-11=91$ minutes
Soil Infiltration Rate

Polypipe Civils

Charnwood Business Park, Loughborough, Leicestershire LE11 1LE
Tel: +44 (0) 1509615100 Fax: +44 (0) 1509610215 Email: civils@polypipe.com
www.polypipe.com/civils

